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Abstract

The objective of the study is to present a mixed finite element (FE) formulation for the free vibration analysis of non-

cylindrical helices with variable cross-section. Non-cylindrical helix geometry was well approximated through the variable

arc lengths and linear variations in curvatures via shape functions. The mixed FE model for non-cylindrical helices was

developed by using the exact cylindrical helix geometry and corresponding field equations. The element and consistent

mass matrices are attained under these assumptions. The element matrix is derived based on the Timoshenko beam theory

and the effects of rotary inertia are involved into the mass matrix. Although the formulation is quite simple, the generated

element is capable to provide highly accurate solutions for the conical, barrel and hyperboloidal geometries of non-

cylindrical helices. The results of presented FE model based on an approximated geometry approach are in a good

agreement with the other studies in the actual literature. Some original examples were generated and solved for the

literature as well.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Helical springs have been evolved to meet needs in engineering practice especially in mechanical and civil
engineering. They are significant elements in machines and vehicles and preferred at the stair applications in
civil engineering due to the architectural requirements. Numerous theoretical, numerical and experimental
investigations of helices are available in the literature. The first differential equations for helical spring
dynamics were given by Love [1]. Epstein [2] theoretically derived both the elongations and fundamental
frequencies of conical coil springs for several dynamic boundary conditions and experimentally verified the
frequencies on nickel and piano wire springs. Love’s [1] equations were extended by Yoshimura and Murata
[3] by considering the torsional inertia effect. Young and Scordelis [4] investigated the accuracy of the theories
by performing an experimental study. Scordelis [5] proposed general equations for the determination of the
redundants at midspan of a uniformly loaded helicoidal girder fixed at its ends. He also obtained the internal
forces for 510 different cases by including the variables being horizontal angle, angle of slope and cross-
sectional dimensions. Neglecting the axial and shear deformations, Cinemre [6] statically solved the isotropic
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

A cross-sectional area
A0 ¼ A=k0 shear area
Ā; K̄ ; Ī t; Ī n; Ī b cross-sectional properties
ðĀÞb; ðK̄Þb; ðĪ tÞb; ðĪ nÞb; ðĪ bÞb; ðb ¼ i; jÞ nodal va-

lues of cross-sectional properties
ðAEÞb; ðGItÞb; ðGInÞb; ðGIbÞb ðb ¼ i; jÞ nodal va-

lues of the rigidities
c c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ p2

p
ci, cj nodal values of c

di, dj denotes the nodal variables at i and j

nodes, respectively
ds ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 þ dy2 þ dz2

p
infinitesimal arc length

in the cartesian coordinate system
E, G, n Young’s modulus, shear modulus, Pois-

son’s ratio
I moment of inertia
i, j represent node numbers of the finite

element
i, j, k unit vectors in the directions of x, y and z

axes, respectively
It torsional moment of inertia
In, Ib moments of inertia of cross-section with

respect to normal and binormal axes,
respectively

k0 shear coefficient
½kd1;d2 � sub-element matrix including d1 and d2

variables
½bk� sub-element matrix including boundary

conditions
½me� element mass matrix
½md1 ;d2 � sub-mass matrix including d1 and d2

variables

M moment vectors
n number of active turns
pi, pj nodal step for unit angles at i and j

nodes, respectively
pðjÞ step for unit angle
r position vector
RðjÞ centerline radius varying with j
se ¼ cDj helix finite element arc length
t, n, b are the tangential, normal and binormal

unit vectors, respectively
T internal force vectors
u displacement vector in the centroid of

cross-section
û; X̂; T̂; M̂ the known boundary conditions
a pitch angle
b reduction factor for the cross-sectional

diameter
c shear unit angle vector
j unit rotation vector
r density of material
ti, tj nodal torsions of the spring axis at i and j

nodes, respectively
j horizontal angle
ji and jj horizontal angle at i and j nodes,

respectively
w, t curvature and torsion of the helix axis
wi, wj nodal curvatures of the spring axis at i

and j nodes, respectively
ci, cj linear shape functions at nodes i and j

. . . . . .ð Þ½ �s geometric boundary conditions

. . . . . .ð Þ½ �t dynamic boundary conditions
o angular frequency
X rotational vector around the centroidal

axes of cross-section
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cylindrical helices by an exact solution technique for the so-called carry-over (transfer) matrix. Wittrick [7]
worked out the wave propagation in semi-infinite springs and obtained approximate solutions by considering
the rotary inertia and shear deformations.

Finite element (FE) technique is widely used in the analysis of helicoidal springs due to its flexibility in
applications. Mottershead [8] studied the dynamics of the helical rods and springs. His formulation suggested
in his work also confirmed Wittrick’s [7] equations exactly. The natural frequencies according to his method
were in a good agreement with his experimental study. Using Wittrick’s [7] differential equations Mottershead
[9] extended the theory to large displacement theory through Lagrange–Green strain equations and derived
consistent geometric stiffness matrices. He offered an investigation of static, dynamic stability and nonlinear
wave propagation of springs. Using the Myklestad method, Nagaya et al. [10] studied the free vibration
analysis for barrel and hyperboloidal types of helical springs numerically and experimentally. Pearson and
Wittrick [11] developed a theory for the uniform helical springs based on the Bernoulli–Euler beam theory to
derive the dynamic stiffness matrix by considering steady-state and steady-state forced vibration. Based on the
Timoshenko theory Akoz et al. [12] developed a functional, for the static analysis, suitable to the mixed FE
equations and applicable to three dimensional bars with arbitrary geometry and variable cross-section.
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Omurtag and Akoz [13] analyzed helical beams with variable cross-section under arbitrary static loading by
using mixed FE where shear effects were considered. Xiong and Tabarrok [14] developed a general element for
the vibration analysis of spatially curved and twisted rods under various loads. They considered the initial
bending moments, shear forces as well as axial loads and stated that the element could be used for the
vibration analysis of rods subjected to conservative and non-conservative follower-type forces. Yıldırım [15]
developed a numerical algorithm by determining the static element transfer matrix and studied the parameters
affecting the free vibration frequency of helical springs, in which shear effect and torsional moments of inertia
were considered. Employing the transfer method and the complementary functions Yıldırım and Ince [16]
determined the free vibration frequencies of non-cylindrical helices by including the effects of rotary inertia,
shear and axial deformations. Yıldırım [17] used the distributed parameter model for the free vibration
analysis of non-cylindrical helices and derived the exact natural frequencies for circular and squared sections
in graphical forms. Yıldırım [18] presented analytical expressions for the first six natural frequencies of
isotropic cylindrical helical springs with circular or rectangular cross-sections. Lee and Thompson [19]
obtained the dynamic stiffness matrix through the equation of free wave motion in helical spring based on the
Timoshenko beam theory and calculated the natural frequencies by means of Wittrick–Williams method.
Employing the transfer matrix method Becker et al. [20] produced the frequency design charts of helical
compression springs with circular cross-section and clamped ends. Busool and Eisenberger [21] attained the
exact shape functions having terms less than 200 to derive the dynamic stiffness matrix of arbitrary shaped
helices with variable cross-section by considering the effects of axial, shear deformations and the rotary
inertia.

This study presents a method with respect to FEM analysis for non-cylindrical, variable cross-sectional
helices by including the variation of curvatures and arc lengths. As far as the author’s knowledge, this
research is the first study on the free vibration analysis of non-cylindrical helices with variable cross-sections.
This method was developed based on the functional introduced by Omurtag and Akoz [13] for the
static analyses of the cylindrical helices with exact geometry. According to the developed method in this study,
the consistent mass matrix encompasses the rotatory inertia and the effects of torsional moment of inertia
while mixed FE matrix considers the shear effect. Although the proposed approach is quite simple, the
results are in an excellent agreement with the FEM results based on exact geometry in the literature, when
compared with regard to precision and number of elements. The results were verified through the studies in
the actual literature and ANSYS [22]. Finally, original examples were generated and solved for the literature
as well.

2. Field equations and functional

In this study, the helices made of elastic, isotropic-homogenous material are considered by regarding first-
order theory and warping is neglected.

2.1. Non-cylindrical helix geometry

The geometrical properties of the non-cylindrical helix in Fig. 1 are given:

x ¼ RðjÞ cos ðaÞ; y ¼ RðjÞ sin ðaÞ; z ¼ pðjÞj, (1)

pðjÞ ¼ RðjÞ tan ðaÞ, (2)

where a denotes the pitch angle, RðjÞ and pðjÞ signify the centerline radius and the step for unit angle of the
helix as a function of the horizontal angle j, respectively. In the cartesian coordinate system, the position
vector of any point on a helix can be expressed as r ¼ xiþ yjþ zk via the unit vectors i; j;k in the directions of
x, y and z axes, respectively. In the Frenet coordinate system, as seen in Fig. 2, unit Frenet vectors
differentially depends on the position vector r in the form

t ¼
dr

ds
; n ¼

dt=ds

dt=ds
�� �� ; b ¼ t� n, (3)
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(a) (b)

Fig. 1. Some geometrical properties of helix.

Fig. 2. Cartesian and Frenet axes of a helix.
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where t, n, b are the tangential, normal and binormal unit vectors, respectively, and the infinitesimal arc length
ds in the cartesian coordinate system is ds ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 þ dy2 þ dz2

p
. In the Frenet coordinate system,

ds ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2ðjÞ þ p2ðjÞ

q
dj ¼ cðjÞdj, (4)

dt

ds
¼ wn;

dn

ds
¼ �wtþ tb;

db

ds
¼ �tn, (5)

where w and t are the curvature and torsion of the helix axis, respectively, according to Omurtag [23].
2.2. Cylindrical helix geometry

In the case of cylindrical helix, since centerline radius of helix is R ¼ RðjÞ ¼ constant, all the variables are
constant and

w ¼
R

c2
; t ¼

p

c2
; c2 ¼ R2 þ p2; p ¼ R tan a. (6)
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The transformation matrices of unit vectors between the cartesian and Frenet co-ordinate systems are:

i

j

k

8><>:
9>=>; ¼

� R
c
sin j � cos j p

c
sin j

R
c
cos j � sin j p

c
cos j

�
p
c

0 R
c

264
375 t

n

b

8><>:
9>=>;, (7)

t

n

b

8><>:
9>=>; ¼

� R
c
sin j R

c
cos j p

c
sin j

� cos j � sin j 0
p
c
sin j �

p
c
cos j R

c

264
375 i

j

k

8><>:
9>=>;. (8)
2.3. Field equations in cylindrical helix

The vectorial quantities u, O, T and M are expressed in Frenet coordinate axes as follows:

u ¼ uttþ unnþ ubb

X ¼ Ottþ Onnþ Obb

T ¼ Tttþ Tnnþ Tbb

M ¼MttþMnnþMbb

9>>>=>>>;, (9)

where u is the displacement vector in the centroid of the cross-section, O is the rotational vector around the
centroidal axes of the cross-section, T andM are the internal force and the moment vectors, respectively. Field
equations of the Timoshenko beam [24] are:

Equation of motion :

dT
ds
� rA€uþ p ¼ 0

dM
ds
þ t� T� rI €Xþm ¼ 0

)
, (10)

Kinematic equations :
c� du

ds
� t�X ¼ 0

j� dX
ds
¼ 0

)
, (11)

Constitutive equations :
CgT� c ¼ 0

CkM� j ¼ 0

)
, (12)

where €u ¼ q2u=qt2, c is the shear unit angle vector, j is the unit rotation vector, A is the cross-sectional area and
I is the moment of inertia. Compliance matrices for homogenous-isotropic material according to Hooke’s law are:

Cg ¼

1=EA 0 0

0 1=GA0 0

0 0 1=GA0

264
375; Ck ¼

1=EIt 0 0

0 1=EIn 0

0 0 1=EIb

264
375, (13)

where E and G are Young’s modulus and shear modulus, respectively, A0 ¼ A=k0 is the shear area, k0 is the shear
coefficient, It is the torsional moment of inertia, In and Ib moments of inertia around the n and b axes, respectively.

2.4. Functional

Using the Gâteaux differential Akoz et al. [12] developed a functional suitable to the mixed FEM
formulation. Later, Omurtag and Akoz [13] employed this functional for the static analysis of cylindrical
helices in Fig. 2. Instead of equilibrium equations, from Eq. (10) and for p ¼ m ¼ 0, this functional yields,

IðyÞ ¼ � u; dT
ds

� �
þ t�X;T½ � � dM

ds
;X

� �
� 1

2
½CkM;M� � 1

2
½CgT;T�

�1
2
rAo2½u; u� � 1

2
ro2½IX;X�

þ½ðT� T̂; uÞ�s þ ½ðM� M̂; uÞ�s þ ½û;T�� þ ½X̂;M��

9>>=>>;, (14)
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which is applicable to linear dynamic analysis. In Eq. (14) r is the density of material, o is the angular
frequency. û; X̂; T̂; M̂ are the known boundary conditions. The s and t subscripts denote the geometric and
dynamic boundary conditions, respectively.

3. Finite element formulation

3.1. Finite element matrices

Linear interpolation functions are used for the FE formulation

ci ¼
jj � j

Dj
; cj ¼

j� ji

Dj
; ðjipjpjjÞ, (15)

where i and j indices represent node numbers of the FE as seen in Fig 2, jj 4ji and Dj ¼ jj � ji. In the case
of cylindrical helix FE, arc length is se ¼ cDj where c is constant. The main objective of this study is to derive
the element and mass matrices which are applicable to non-cylindrical helices using the equations of exact
cylindrical geometry as well as the variable cross-sectional properties. Approximating the non-cylindrical
geometry will be achieved by means of the shape functions, as given below:

ce ¼ cici þ cjcj

se ¼ ðcici þ cjcjÞDj

te ¼ tici þ tjcj

we ¼ wici þ wjcj

9>>>>=>>>>;. (16)

For all the nodes of i and j the variables pi, pj, ci, cj, wi, wj, ti, tj are calculated through Eq. (6) where Ri and Rj

are the radii of helices. Formulation of the variable cross-section will be achieved, as stated by Omurtag and
Akoz [13], in the form,

ĀðjÞ ¼ 1
ðAEÞi

ci þ
1
ðAEÞj

cj

K̄ðjÞ ¼ 1
ðGA0Þi

ci þ
1

ðGA0Þj
cj

Ī tðjÞ ¼ 1
ðGItÞi

ci þ
1
ðGItÞj

cj

Ī nðjÞ ¼ 1
ðGInÞi

ci þ
1

ðGInÞj
cj

Ī bðjÞ ¼ 1
ðGIbÞi

ci þ
1

ðGIbÞj
cj

9>>>>>>>>>>=>>>>>>>>>>;
, (17)

where (AE)i, (AE)j,y , ðGIbÞi, ðGIbÞj are nodal values of the rigidities. Finally the mixed element matrix becomes,

, (18)
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where the nodal variable vector for the element matrix in Eq. (18) is

XT ¼ ut un ub Ot On Ob Tt Tn Tb Mt Mn Mbf g.

Dimensions of all the square sub-matrices in Eq. (18) are 2� 2. Boundary conditions are given in the following
matrix:

½bk� ¼ 0:5 �0:5

0:5 �0:5

� �
. (19)

The superscript indices used in the square sub-matrices ½kc;Ā�, ½kc;K̄ �, ½kc;Ī t �, ½kc;Īn �, ½kc;Īb �, ½kc�, ½kc;w�, ½kc;t� indicate
the variation of helix geometry ðc; w; tÞ and the cross-sectional properties ðĀ; K̄ ; Ī t; Ī n; Ī bÞ. The terms of the sub-
matrices including two variables are:

kc;d
ii ¼

1
60
Dj½3cið4di þ djÞ þ cjð3di þ 2djÞ�

kc;d
ij ¼ kc;d

ji ¼
1
60
Dj½cið3di þ 2djÞ þ cjð2di þ 3djÞ�

kc;d
jj ¼

1
60
Dj½cið2di þ 3djÞ þ 3cjðdi þ 4djÞ�

9>>=>>;, (20)

where the variable di; dj denote the nodal values of wb; tb and ðĀÞb; ðK̄Þb; ðĪ tÞb; ðĪ nÞb; ðĪ bÞb, ðb ¼ i; jÞ. In the case of
di ¼ dj ¼ d ¼ constant the above equations become

kc
ii ¼

1
12

d Djð3ci þ cjÞ

kc
ij ¼ kc

ji ¼
1
12

d Djðci þ cjÞ

kc
jj ¼

1
12

d Djðci þ 3cjÞ

9>>=>>;. (21)

Variable cross-sectional properties of a helix can be expressed as

eAðjÞ ¼ Aici þ Ajcj ; eInðjÞ ¼ ðInÞici þ ðInÞjcjeI tðjÞ ¼ ðI tÞici þ ðI tÞjcj ; eIbðjÞ ¼ ðIbÞici þ ðIbÞjcj

9=;, (22)

where Ab ; ðb ¼ i; jÞ and ðI t; In; IbÞb ; ðb ¼ i; jÞ are the nodal values of cross-sectional areas, torsional moment of
inertia and moment of inertias around principles axes of cross-section, respectively. By means of Eqs. (16), (20)
and (22) the mass matrix considering the approximated geometry of non-cylindrical helix becomes

, (23)
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where all the 2� 2 sub-matrices, which are handled in a similar way given by Eq. (20), are in the form,

mc;d
ii ¼

1
60
rDj½3cið4di þ djÞ þ c2ð3di þ 2djÞ�

mc;d
ij ¼ mc;d

ji ¼
1
60
rDj½cið3di þ 2djÞ þ cjð2di þ 3djÞ�

mc;d
jj ¼

1
60
rDj½cið2di þ 3djÞ þ 3cjðdi þ 4djÞ�

9>>=>>;. (24)
3.2. Solution method in the FEM

Free vibration analysis in the FEM can be expressed as

ð½K� � o2½M�Þfwg ¼ f0g (25)

and this analysis transforms into the standard solution of eigenvalue problem, where o represents the natural
angular frequencies, ½K� denotes the system matrix, ½M� is the mass matrix and w ðu;XÞ signifies the column
0
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Fig. 4. The convergence of the first natural frequency of barrel helix ðR2=R1 ¼ 0:2Þwith respect to the number of elements (Example 1), (J)
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Fig. 3. Radii of non-cylindrical helices.
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matrix including nodal displacements and rotations. In the mixed FEM, due to the nodal force and moment
vector Ff g, Eq. (25) is in the form

½K11� ½K12�

½K21� ½K22�

" #
� o2

½0� ½0�

½0� ½M�

" # !
Ff g

wf g

( )
¼

0f g

0f g

( )
. (26)

Eliminating Ff g from the above equation, the equation system reduces to

½K�� � o2 M½ �
� �

wf g ¼ 0f g, (27)

where ½K�� ¼ ½K22� � ½K12�
T½K11�

�1½K12� is the condensed system matrix.

4. Examples

The first and second examples, inspired by the literature, are on the free vibration analysis of non-cylindrical
helices with constant cross-section based on the exact geometry introduced by Nagaya et al. [10], Yıldırım and
Ince [16]. Firstly; the approximated geometry approach were verified for these helices, and secondly variable
cross-section case was considered by leading to original examples for the literature. Third example is a conical
helix with variable rectangular cross-section along its centroidal axis. All the results have been compared
either by the studies in literature or ANSYS [22].
Fig. 5. Perspective view of barrel spring with variable circular cross-section.

Table 1

Natural frequencies (in Hz) of barrel type spring with constant circular cross-section (d ¼ 2mm, R2/R1 ¼ 0.2, N: number of elements)

Mod Nagaya et al. (theoretical) [10] Yıldırım–Ince [16] ANSYS [22] This study

N ¼ 78 N ¼ 50 N ¼ 100 N ¼ 500 N ¼ 1000 N ¼ 100 N ¼ 75 N ¼ 50 N ¼ 30

1 71.00 71.88 73.65 72.06 72.01 71.95 72.12 72.07 72.28

2 81.00 81.22 83.60 81.82 81.76 81.22 81.24 81.28 81.41

3 — 99.98 102.31 100.34 100.24 99.99 99.95 99.00 85.62

4 — 99.99 102.35 100.41 100.31 100.02 100.01 99.04 85.65

5 143.00 143.93 148.05 144.85 144.75 143.95 144.04 143.93 134.52

6 150.00 145.13 150.60 146.38 146.22 145.11 145.01 144.51 134.64
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Herein, the horizontal radius of any point on the centroidal axis of helix (see Figs. 5, 7 and 9) is determined
using the following formulae:

Barrel or hyperboloidal helices : RðjÞ ¼ R1 þ ðR2 � R1Þ 1�
j
np

	 
2
.

Conical helices : RðjÞ ¼ R1 þ
ðR2 � R1Þj

2np
,

where j is the horizontal angle and n is the number of active turns of helix, respectively.
4.1. Example 1—barrel helix

Constant cross-section case: Geometrical and material properties of barrel helix (Fig. 3), fixed at both ends,
are as the follows: the number of active turns n ¼ 6:5, diameter d ¼ 2mm, R1 ¼ 25mm, R2 is variable, pitch
angle a ¼ 4.81,Young modulus E ¼ 210GPa, u ¼ 0.3, r ¼ 7850 kg/m3 and shear area coefficients
an ¼ ab ¼ 1.1. This problem was analyzed for the case of constant circular cross-section with d ¼ 2mm.
For R2/R1 ¼ 0.2, the convergence of first natural frequency with respect to the elements number was given in
Fig. 4. First six natural frequencies were compared with the studies by Nagaya et al. [10], Yildirim and Ince
[16] and by ANSYS as well. The results were tabulated in Table 1.

Variable cross-section case: As far as the author’s knowledge, variable cross-sectional barrel helix is an
original evolution for the literature. Geometrical and material properties of the barrel helix in Fig. 5 are the
same as the constant cross-section case. The diameter of circular cross-sections is equal to d2 ¼ 2mm at the
points R ¼ R2 and reduces linearly to bd2 at R ¼ R1. Diameter variations were investigated for each values of
b, where b ¼ 0.25,0.50 and 0:75. The first six natural frequencies for the case of R2/R1 ¼ 0.2 given in Table 2
were compared with the ANSYS. The proposed method in this study provides sufficient consistency via 100
elements, while ANSYS requires much more elements. The variations of the first six natural frequencies for
b ¼ 0.25,0.50,0.75,1.00 and R2/R1 ¼ 0.1,y,1.0 having an increment of 0:1 were illustrated in Fig. 6.
Table 2

Natural frequencies (in Hz) of barrel type spring with variable circular cross-section (d2 ¼ 2mm, d1 ¼ b d2, R2/R1 ¼ 0.2, N: number of

elements)

b Mod ANSYS [22] This study

N ¼ 100 N ¼ 500 N ¼ 1000 N ¼ 100 N ¼ 75 N ¼ 50 N ¼ 30

1 66.42 64.94 64.89 64.82 65.06 64.98 65.22

2 71.21 69.63 69.58 69.24 69.39 69.36 69.55

0.75 3 89.22 87.46 87.38 87.19 87.28 86.40 74.85

4 89.23 87.48 87.40 87.22 87.33 86.44 74.86

5 120.28 117.59 117.50 116.86 117.02 116.93 111.10

6 123.54 119.83 119.68 118.91 118.98 118.50 111.18

1 55.58 54.31 54.26 54.13 54.37 54.28 54.47

2 57.20 55.88 55.83 55.71 55.96 55.86 56.07

0.50 3 73.26 71.78 71.71 71.57 71.75 71.01 61.89

4 73.32 71.82 71.75 71.63 71.82 71.09 61.96

5 89.38 87.28 87.21 86.77 86.95 86.77 83.48

6 92.93 90.14 90.02 89.54 89.69 89.26 83.97

1 37.54 36.65 36.62 36.52 36.71 36.60 36.66

2 40.60 39.63 39.59 39.53 39.76 39.63 39.69

0.25 3 49.24 48.16 48.12 47.96 48.13 47.85 44.07

4 51.52 50.40 50.35 50.28 50.52 50.06 44.71

5 54.89 53.51 53.45 53.22 53.37 53.09 50.27

6 57.58 55.94 55.87 55.66 55.84 55.48 52.05
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Fig. 6. Natural frequencies corresponding to: (a) first mode, (b) second mode; (c) third mode; (d) fourth mode; (e) fifth mode; (f) sixth

mode for barrel type helices with (B) b ¼ 1.00, (&) b ¼ 0.75, (n) b ¼ 0.50, (J) b ¼ 0.25.

Fig. 7. Perspective view of hyperboloidal spring with variable circular cross-section.

K. Girgin / Journal of Sound and Vibration 297 (2006) 931–945 941



ARTICLE IN PRESS
K. Girgin / Journal of Sound and Vibration 297 (2006) 931–945942
4.2. Example 2—hyperboloidal helix

Geometrical and material properties of hyperboloidal helix (see Fig. 7) fixed at both ends are R2 ¼ 13mm,
n ¼ 6:5, d ¼ 2.6mm, a ¼ 4.81, E ¼ 210GPa, u ¼ 0.3, r ¼ 7850 kg/m3, an ¼ ab ¼ 1.1 while R1 is variable.

Constant cross-section case: The first six natural frequencies for the most extreme case (R1/R2 ¼ 2.4) were
verified by comparing with the results given by Nagaya et al. [10], Yildirim and Ince[16] and analyzed by
ANSYS. The results were displayed in Table 3.

Variable cross-section case: The diameter of circular cross-sections is equal to d2 ¼ 2.6mm at the points
of R ¼ R2 and the diameter reduces linearly to bd2 at R ¼ R1. Diameter variations were investigated
for the concerning values of b. The extreme case, R1/R2 ¼ 2.4, was also examined. Since it is an original
example introduced to the literature the first six natural frequencies were only compared with ANSYS
whose results were given in Table 4. It can be stated again that the presented study provides sufficient
Table 3

Natural frequencies (in Hz) of hyperboloidal type spring with constant circular cross-section (d ¼ 2.6mm, R1/R2 ¼ 2.4, N: number of

elements)

Mod Nagaya et al. (theoretical) [10] Yıldırım–Ince [16] ANSYS [22] This study

N ¼ 78 N ¼ 50 N ¼ 100 N ¼ 500 N ¼ 1000 N ¼ 100 N ¼ 75 N ¼ 50 N ¼ 30

1 76.00 75.80 78.60 75.99 75.82 76.94 78.88 78.03 78.52

2 96.00 96.15 97.73 95.71 95.63 96.77 97.70 97.19 91.28

3 103.00 103.07 107.30 103.90 103.64 105.38 108.96 106.19 93.09

4 133.00 132.85 135.93 132.73 132.56 134.43 135.90 135.12 127.76

5 — 160.69 163.61 159.78 159.60 161.62 163.60 162.30 153.70

6 — 182.96 190.30 184.39 184.03 186.49 189.81 188.32 156.30

Table 4

Natural frequencies (in Hz) of hyperboloidal type spring with variable circular cross-section (d2 ¼ 2.6mm, d1 ¼ bd2,R1/R2 ¼ 2.4, N:

number of elements)

b Mod ANSYS [22] This study

N ¼ 100 N ¼ 500 N ¼ 1000 N ¼ 100 N ¼ 75 N ¼ 50 N ¼ 30

1 82.44 79.83 79.67 80.81 82.61 81.85 82.71

2 103.01 100.67 100.55 101.86 103.40 102.32 94.94

0.75 3 109.37 106.36 106.15 107.80 110.70 108.43 96.18

4 134.18 130.92 130.74 132.57 133.35 133.35 130.37

5 155.81 151.13 150.84 153.07 154.42 154.42 148.31

6 165.13 160.53 160.28 162.41 163.81 163.81 157.66

1 87.21 84.57 84.41 85.56 87.25 86.51 87.49

2 109.72 107.10 106.94 108.39 110.40 108.78 99.05

0.50 3 111.53 108.73 108.54 110.12 112.56 110.58 99.86

4 133.77 130.45 130.27 132.02 133.55 132.78 131.84

5 138.20 134.04 133.79 135.71 138.28 136.99 135.77

6 151.81 147.37 147.11 149.31 153.19 150.62 145.68

1 92.73 90.05 89.90 91.01 92.47 91.67 92.09

2 111.60 108.33 108.13 109.67 112.16 110.56 103.44

0.25 3 118.52 115.74 115.56 117.04 119.01 116.94 104.97

4 123.24 120.39 120.22 121.71 123.31 121.70 116.97

5 132.15 128.87 128.69 130.26 131.59 130.74 130.34

6 145.54 141.13 140.84 143.00 146.98 144.03 133.42
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consistency via 100 elements, while ANSYS needs much more elements. The first six natural frequencies
were analyzed for b ¼ 0.25,0.50,0.75,1.00 and R1/R2 ¼ 1.0,y,2.4 with the increment of 0:1 and illustrated
in Fig. 8.

4.3. Example 3—conical helix with variable rectangular cross-section

Geometrical and material properties of a conical helix fixed at both ends (see Fig. 9) are n ¼ 2, R1 ¼ 7.50m,
R2 ¼ 3.00m, b1 ¼ 2:50m (at j ¼ 0), a ¼ 5.21, E ¼ 30GPa, u ¼ 0.15, r ¼ 2400 kg/m3 and an ¼ ab ¼ 1.2.
The width of the rectangular cross-section is variable with respect to bðjÞ ¼ b1 � 0:1j (m) for 0pjp4p
and the height of cross-section t ¼ 0.3m constant along the helix axis. For the verification of this
original example with regard to the literature, the software ANSYS is again employed. The results were shown
in Table 5. Natural frequencies for the first six modes are in good agreement with ANSYS. The presented
study via 75 elements provides sufficient consistency, while ANSYS predicts them by using much more
elements.
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Fig. 8. Natural frequencies corresponding to: (a) first mode; (b) second mode; (c) third mode; (d) fourth mode; (e) fifth mode; (f) sixth

mode for hyperboloidal type helices with (B) b ¼ 1.00, (&) b ¼ 0.75, (n) b ¼ 0.50, (J) b ¼ 0.25.
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Fig. 9. Conical helix with variable rectangular cross-section.

Table 5

Conical helix with variable rectangular cross-section ( N: number of elements)

Mod ANSYS [22] This study

N ¼ 50 N ¼ 75 N ¼ 100 N ¼ 1000 N ¼ 75 N ¼ 50 N ¼ 25

1 0.4802 0.4785 0.4779 0.4772 0.4763 0.4763 0.4763

2 0.8140 0.8109 0.8098 0.8093 0.8116 0.8115 0.8107

3 1.4836 1.4768 1.4743 1.4737 1.4850 1.4847 1.4792

4 1.6879 1.6759 1.6712 1.6637 1.6622 1.6621 1.6595

5 1.9011 1.8909 1.8872 1.8830 1.8891 1.8886 1.8791

6 2.5733 2.5608 2.5563 2.5504 2.2571 2.2413 2.1595
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5. Conclusion

In this study a mixed FE formulation, based on the functional [12,13], was developed for the free vibration
analysis of non-cylindrical helices with variable cross-section. The mixed element and consistent mass matrices
of helices, namely 3D curved bars, were derived according to the Timoshenko beam theory by including rotary
inertia terms in the mass matrix and shear effects in the element matrix. Thus, the proposed method is also
applicable to moderately thick bars and provides locking-free solutions. The geometry of non-cylindrical
helices was approximated via a convenient approach capable to handle sophisticated geometries. The
geometry approximation was carried out through the variable arc lengths and linear variations in curvatures
via shape functions. The formulation was firstly verified with respect to precision and number of elements
through the studies in the literature. In this study the original examples concerning non-cylindrical helices with
variable cross-sections were contributed to the literature and verified by ANSYS. In fact, the results are in
good agreement with the FE studies based on the exact geometry in the actual literature. The proposed
method requires much less elements compared with FE programs employing straight bars.

As R2/R1 ratio of the barrel helices and R1/R2 ratio of the hyperboloidal helices decreases the natural
frequencies of first six modes increase. Recalling Examples 1 and 2, b is a reduction factor for the cross-
sectional diameter referring both types of helices. The higher b ratios, the higher natural frequencies. Dramatic
increments in natural frequencies can be observed for high values of b ratios as well. In Example 1, for
instance, in the case of b ¼ 0.75, 0.50 and 0.25 for R2/R1 ¼ 0.20, the reduction in first natural frequency
compared with constant cross-sectional barrel helices corresponds to 9.91%, 24.77% and 49.24%,
respectively. Similar behavior is valid for any R2/R1 ratio in barrel helices and any R1/R2 ratio in
hyperboloidal helices (see Tables 1–4). Hence, a linear reduction at the cross-section up to the mid point of any
helix will cause the natural frequencies to decline compared with the constant cross-section case.
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